

METAL EXTRACTION 2

1		Lead is extracte	ed from the ore galena that contains lead(II) sulphide, PbS.									
		Step 1	roasting lead(II) sulfide in air to form lead(II) oxide									
			$PbS + O_2 \rightarrow PbO + SO_2$									
		Step 2	using carbon to displace lead from lead(II) sulfide									
			$PbO + C \rightarrow Pb + CO$									
	a)	Gelana is an ore of lead. What is an ore?										
	b)	Why does carbo	on displace lead in step 2?									
	c)	Explain why the	e lead(II) oxide is reduced in step 2.									
	d)	Explain clearly	why step 2 is a redox reaction.									
2		Calcium is ofter reactions at the	n extracted by electrolysis of molten calcium chloride, CaCl _{2.} The half equations for the electrodes are:									
			$Ca^{2+} + 2e^{-} \rightarrow Ca$ and $2Cl^{-} - 2e^{-} \rightarrow Cl_{2}$									
	a)	Why can calciu	m not be extracted by heating calcium chloride with carbon?									
	b)	Write the half ed	quation that shows a reduction process. Explain your answer.									

d)) Cal	Calcium chloride must be molten to conduct electricity. It melts at 772°C.											
	i)	Explain why the calcium chloride must be molten to conduct.											
	ii)	Explain why calcium chloride has a high melting point.											
	Copper can be extracted from copper(II) carbonate in the ore malachite by												
		Step 1			oper(II) carbonate ₂ SO ₄ → CuSO ₄ +		acid to	form copper(II) sulfate					
		Step 2	usin	g iron to	o displace copper $e \rightarrow Cu + FeSO_4$	from copper(II) sulfa	te solution					
	Why does iron displace copper in step 2?												
a)) Wh	y does iron	displac	се сорр									
) Wri	te two half e	equatio	ns to sh	now what happens	s in step 2.							
) Wri	te two half e	equatio	ns to sh	now what happens	s in step 2.							
b)) Wri hali	te two half effequation 1	equatio	ns to sh	now what happens	s in step 2.							
b)	hali hali Exp	te two half effequation 1	equatio	ep 2 is	now what happens	s in step 2.							
b)	hali hali Exp	te two half of equation 1 fequation 2 plain clearly	why st	ep 2 is	a redox reaction.	s in step 2.							

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Understand redox in terms of oxygen			Explain conductivity of ionic cpds		
Good SPG			Understand redox in terms of electrons			Write half equations for displacement		
Knows what an ore is			Explain displacement in terms of redox			Write ionic equations for displacement		
Understand why displacement occurs			Explain why ionic cpds have high mpt					